A Multi-Level Cache Approach for Realtime Visualization of Massive 3D GIS Data

Abstract

The real-time visualization of 3D GIS at a whole city scale always faces the challenge of dynamic data loading with high-efficiency. Based on the multi-tier distributed 3D GIS framework, this paper presents a multi-level cache approach for dynamic data loading. It aims to establish in 3D GIS spatial database engine (3DGIS-SDE) the unified management mechanism of caches on three levels, including: the client memory cache (CMC) oriented to sharing application, the client file cache (CFC) organized by index, as well as the application server memory cache (ASMC) of structural consistency. With the help of the proposed optimized cache replacement policy, multi-level cache consistency maintenance as well as multithread loading model designed in the paper, the engine is able to adaptively make full use of each-level caches according to their own application properties and achieve effective coordination between them. Finally, a practical 3D GIS database based on Oracle 11g is employed for test. The experimental results prove this approach could satisfy multi-user concurrent applications of 3D visual exploration.

Publication
International Journal of 3-D Information Modeling (IJ3DIM)