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Abstract: In recent years, there has been tremendous growth in the field of indoor and 

outdoor positioning sensors continuously producing huge volumes of trajectory data that has 

been used in many fields such as location-based services or location intelligence. Trajectory 

data is massively increased and semantically complicated, which poses a great challenge 

on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing 

method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal 

R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than 

directly inserting trajectory points, we group consecutive trajectory points as nodes according 

to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf 

nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of 

insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm 

are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree  

sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. 

Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed 

for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms 

TB*-tree in some aspects such as generation efficiency, query performance and query type. 
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1. Introduction 

In recent years, there has been tremendous growth in the field of indoor and outdoor positioning 

sensors [1,2]. At the same time, precision and reliability in positioning have been enhanced 

dramatically, and mobile positioning services have become pervasive around the world. Users of 

positioning devices are not simply consumers of location information, and they also provide the 

content of geospatial information via Web 2.0 technologies. These phenomena result in unprecedented 

situations where databases are consistently populated with massive data—much of them are trajectory 

data. Further, dramatically developing techniques such as mobile computation, wireless transmission 

and ubiquitous positioning sensors continue to pose new challenges on spatio-temporal databases. 

Moreover, spatio-temporal search now concerns not only space but also time and trajectory semantics. 

In order to cope with these problems, spatio-temporal indexing techniques for trajectory data, namely 

trajectory indexing techniques, need to be studied as the core of data management solutions [3]. 

Moreover, the trajectory indexing technique deeply influences advanced spatio-temporal analyses, 

such as behavioral pattern analysis and intelligent transportation decision [4]. Yet, little progress has 

been made to date on creating generic tools for the analysis of trajectories [5]. 

Traditional indexing methods can be used to access trajectory data. For example, one-dimensional 

compound indexes based on B-tree variants can be built for multi-dimensional data such as  

spatio-temporal data, where multi-dimensional spatio-temporal data are transformed into  

one-dimensional sorting codes. However, spatio-temporal data aggregation deteriorates greatly in this 

way, which can lead to poor performance in spatio-temporal queries. Some spatial indexes such as  

R-tree and Octree can be easily extended into spatio-temporal indexes, in which time is viewed as 

another dimension in addition to spatial dimensions. However, if the spatial indexes are directly 

applied to time dimension, there will be some potential concerns over efficiency [6].  

Existing trajectory indexes can be classified into three groups. The indexes in the first group are 

based on multi-version structures, in which each timestamp corresponds to a spatial index structure and 

unchanged nodes are shared between versions, such as HR-tree and MV3R-tree [7]. This type of index 

adopts a strategy which concerns firstly temporal dimension and secondly spatial dimensions. Its 

advantage is that its efficiency is high for a time slice query [8]. However, a new node in the index 

structures will be generated even if a node changes slightly, so the storage cost is high. Additionally, it 

leads easily to low efficiency in interval queries. The second type of index is based on spatial partition 

methods, such as SETI and CSE, in which trajectory points are firstly divided into respective spatial 

partitions and then a temporal index is generated for points in each partition [9]. Obviously, it applies a 

strategy which concerns firstly spatial dimensions and secondly temporal dimension. The main 

advantage of this category is that space is divided regularly so that generation and query efficiency are 

high [10]. However, the extent of space needs be predefined, and data distribution may be skewed. In 

addition, trajectories are explicitly split by the boundaries of divided partitions of predefined spatial 

extent. The third type of index, such as STR-tree and TB-tree, is usually extended from traditional 
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spatial indexes such as R-tree, where temporal dimension plays the identical role as spatial dimension. 

TB-tree and its variants focus on explicit trajectory representation. This category can adaptively adjust 

index structures according to data distribution, which produces better query performance, but readily 

deteriorates index generation performance [11]. Very interestingly, a parallel indexing technique is 

proposed to transform spatio-temporal queries into parallel operations in different spatio-temporal 

dimensions [12]. 

Before a data index is studied and designed, it is essential to understand the data characteristics, 

e.g., its type and usage [6]. It is agreeable that there is not a universal indexing method that can satisfy 

requirements of all queries. Generally, indexing methods are influenced by a series of factors such as 

generation efficiency, storage utilization, query performance, query type and caching mechanism. 

Trajectory data typically exhibits the following properties: (a) update operations occur very frequently, 

(b) trajectory data volume tends to be huge, and (c) the types of trajectory queries are very diverse. 

Since moving objects change locations frequently, spatio-temporal data indexes also needs to be 

updated accordingly, which means particular emphasis should be put on the update efficiency. In the 

meantime, index data of only one million trajectory points surpass one hundred megabytes, and 

terabyte-level trajectory data sets are now common, so storage utilization has to be of concern. 

Moreover, adaptive caching mechanisms have to be adopted in indexing methods, which will avoid 

unnecessary resource occupation. 

In order to synthesize the advantages of different indexes and make up for the existing methods, a 

hybrid indexing method has gradually become a trend [13]. Furthermore, cloud storage mechanism 

becomes a wise solution to trajectory databases, whose users are growing rapidly [14]. Focusing on the 

dynamic and semantic trajectory data organization over space and time, this paper presents a hybrid 

trajectory indexing method (HBSTR-tree), which combines Hash table, B*-tree and spatio-temporal  

R-tree. The remainder of the paper first introduces the design idea and the framework of the method in 

Section 2, followed by the detailed procedures and steps of the method in Section 3. Section 4 

introduces a database scheme for storing indexes. Section 5 presents the experimental results and 

performance evaluation results in comparison with another outstanding method—TB*-tree [8]. Finally, 

some conclusions are given in Section 6.  

2. Concept and Structure of HBSTR-Tree 

This section describes the concept and structure of the proposed index method, named HBSTR-tree, 

which supports real-time incremental trajectory databases. Figure 1 shows the principle and the 

framework of HBSTR-tree. The three sub-structures play different roles described as follows: 

(a) Spatio-temporal R-tree is the principal part, which supports spatio-temporal range query; 

(b) Hash table is the accessorial structure, which manages the latest nodes in cache before such 

nodes are inserted as leaf nodes into spatio-temporal R-tree in order to decrease insertion 

operations of spatio-temporal R-tree; and 

(c) B*-tree is the secondary part, which is used as the temporal index for leaf nodes of  

spatio-temporal R-tree to query the trajectories of the targeted objects. 
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In trajectory databases, the attributes of a trajectory point includes object identity, time stamp and 

spatial coordinates, etc. Since the coordinates could be erroneous due to, for example, blocked GPS 

signals or unstable positioning sensors, some data cleaning processes are needed to filter these  

errors [15]. Usually a moving object may have hundreds of thousands of trajectory points itself if it is 

tracked for a long time. It is unwise to store them dispersedly, which will affect storage utilization and 

generation efficiency as well as query performance. Consecutive trajectory points are stored in a group 

as leaf nodes of spatio-temporal R-tree and a leaf node belongs to exactly one moving object. 

Practically, there may be a long time interval between adjacent trajectory points of an object. A time 

threshold called Tt is defined. A new node will be created to store subsequent trajectory points when 

the time interval between two points surpasses this time threshold or when the number of trajectory 

points in the leaf node reaches the maximum capacity predefined by HBSTR-tree. It is helpful to avoid 

huge space-time coverage of leaf nodes.  

Figure 1. Framework of HBSTR-tree. 

 

The R-tree used in HBSTR-tree is a spatio-temporal one with N (2 or over) spatial dimensions and 

one temporal dimension. For such an R-tree, Minimum Bounding Rectangle (MBR) of one node is the 

minimum scope in spatio-temporal axes covering its children items. Here, the absolute number of 

seconds since 1 January 1970 00:00:00 UTC is used as the time reference, which Windows API and 

MongoDB API support. Unlike the original R-tree, leaf nodes are straightly inserted into the level-one 

nodes of spatio-temporal R-tree by a new insertion algorithm, where a novel node-choosing  

sub-algorithm is adopted. Hash table is used to manage the latest nodes of any moving object before 

these nodes are inserted as leaf nodes into R-tree, and these nodes can be accessed efficiently with 

object identification via Hash table. When a node becomes full, it will be inserted into spatio-temporal 

R-tree as one leaf node and a new node will be generated to substitute it. Following this strategy, 

trajectory points are inserted into R-tree in group, so the insertion operation will be more efficient. 
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The R-tree supports various query types, such as trajectories in spatio-temporal range, trajectories in 

spatial range and at time slice, and nearest neighbors over a time slice or a time range. However, it is 

ineffective to search for trajectories of targeted objects, which is commonly required in moving object 

database. In order to solve this problem, leaf nodes of spatio-temporal R-tree are indexed by a B*-tree, 

whose compound key comprises object identification (OID) and start time (StartTime) of leaf nodes. 

One-dimensional search capability of the B*-tree index helps to locate the leaf node covering 

trajectory points of a moving object at any time slice and then scan its trajectories via bidirectional 

pointers of B*-tree . Since a leaf node usually comprises almost 80 trajectory points, the B*-tree index 

of leaf nodes costs much less than the corresponding one of the trajectory points.  

3. HBSTR-Tree Algorithm 

Hash table and B*-tree are traditional indexing methods, and they are briefly introduced here with 

respect to how to use them in the proposed HBSTR-tree. Since spatio-temporal R-tree plays a more 

crucial role in HBSTR-tree as opposed to the former two, the procedures and steps of its algorithm will 

be described in detail in this section. 

3.1. Spatio-Temporal Interval Criterion 

Spatio-temporal interval criterion is defined to evaluate MBRs of nodes. The criterion is crucial for 

two sectors in R-tree generation, namely node-choosing and node-splitting sub-algorithms. For 

example, the original idea of node-choosing algorithm is to insert a tuple into the tree and the insertion 

will enlarge the involved nodes’ MBRs as little as possible. Furthermore, if the insertion makes a node 

overflow, its child items will be split into two subsets whose MBRs cover as little as possible. In 

spatio-temporal R-tree, MBR is a spatio-temporal rectangle parallel to axes. According to original  

R-tree, the product of intervals in spatial and temporal axes, which is called spatio-temporal volume 

here, can be considered as a spatio-temporal interval criterion. According to this criterion, not cubic 

nodes but irregularly-shaped nodes may come first, which is prone to multi-path search, and this badly 

affects query performance. Seemingly, spatio-temporal volume roughly represents existence of moving 

objects. Actually, temporal dimension is very different from spatial dimensions for moving objects. 

Most moving objects repeat trajectories in space, but time in trajectory monotonically increases so that 

leaf nodes always expand in temporal dimension until full. Moreover, in common spatio-temporal 

search operations, regular shapes, such as square (2D) and cube (3D), are often used as spatial 

condition, and time condition can be moment or interval-based.  

Therefore, in addition to time discrimination, shapes of MBRs should be similar to squares or cubes 

in space [16]. In view of this, a new spatio-temporal interval criterion is presented below. 

Let the ranges in N spatial axes be (S1,S2,…,SN) and the range in one temporal axis be T.  

Spatio-temporal interval criterion for N spatial dimensions and one temporal dimension is defined  

as follows: ܥ = ቆ∑ S௜ே௜ୀଵܰ ቇே × ܶ (1)
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The reason as to why to adopt it originates from the Inequality of Arithmetic and Geometric Means, 

briefly the AM-GM inequality. Below is our explanation of this criterion. 

For three positive quantities X, Y, and Z: ൬ܺ + ܻ + ܼ3 ൰ଷ ≥ X ∗ Y ∗ Z, with equality if and only if X = Y = Z (2)

The left part of the inequality is the Arithmetic Means of X, Y and Z, and its right part is the 

Geometric Means of X, Y and Z. Given a fixed volume, there is the minimum Arithmetic Means only 

when it is a cube, whose sides are equally long. This can be generalized into N-dimensional space. The 

less the Arithmetic Means of N spatial sides of MBR are, the more likely the ranges of the spatial axes 

of MBR are equal. Since the Arithmetic Means of N spatial axes of MBR are introduced as part of the 

spatio-temporal interval criterion, this criterion will be helpful to control node shapes. Furthermore, if 

T is less, the criterion will be less. According to this criterion, MBR can be evaluated and optimized 

for spatio-temporal queries. 

3.2. HBSTR-tree Insertion Algorithm 

In order to improve network transmission, moving objects usually accumulate some trajectory 

points locally and then collectively upload them to data servers. In addition, moving objects are 

sometimes offline. As a result, trajectory points are temporally sequential for one object, but it cannot 

be ensured that trajectory points from all objects are consecutive in time. This factor is taken into 

account in the HBSTR-tree algorithm. The HBSTR-tree involves some basic indexing structures, such 

as R-tree, B*-tree and Hash table. These structures are interrelated and interact with each other. Like 

other R-tree variants, HBSTR-tree is built by inserting trajectory points one by one, so its generation 

algorithm is called an insertion one, which includes some key sub-processes, such as node-choosing 

and node-splitting. 

In order to satisfy secondary storage, every node in R-tree corresponds to one disk page, whose size 

depends on basic parameters of operating systems and database and can be set according to hardware 

and software context. At the same time, page size decides the number of child items in a node. The 

structure of leaf nodes is different from that of non-leaf nodes. Therefore, there are different maximum 

numbers of entries or child items in leaf nodes and non-leaf nodes. In order to ensure that the level 

number of every node is unchanged in its lifecycle, let the level number of leaf nodes be 0, and from 

bottom-up the level number of nodes in the other levels is sequentially plus one. For example, the 

father of a leaf-node is a level-1 node. According to R-tree generation mechanism, the depth of R-tree 

will not change until the root node is split into two small nodes. Then, one new root node is generated 

and becomes the father of the two nodes. Hence, the new root node’s level number is the level number 

of the old root node plus one.  

The following describes the detailed steps of the HBSTR-tree insertion algorithm. The Node-splitting 

sub-algorithm is similar to the original one, but the node-choosing sub-algorithm is substantially 

different from the original one. Therefore, this paper focuses on the node-choosing sub-algorithm. The 

spatio-temporal interval criterion mentioned above is adopted in both of the sub-algorithms.  

Figure 2 illustrates a simplified flowchart of this algorithm. The trajectory point to be inserted into 

index is Tuple{OID, Time, Pos, ROWID, etc.}, in which OID is object identity code, Time is the 
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timestamp, Pos is the location of trajectory point, and ROWID is the pointer or storage address of 

trajectory point record. HBSTR-tree includes Hash table named Hash (OID mapped to the latest leaf 

node of moving objects), B*-tree named Btree (whose key is OID/start time of the leaf node), and 

spatio-temporal R-tree named Rtree. Then this algorithm is described in pseudo code in Algorithm 1. 

Figure 2. Flowchart of HBSTR-tree insertion algorithm. 
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Algorithm 1. Pseudo code of HBSTR-Tree insertion algorithm. 

Algorithm 1 Description: HBSTR-Tree Insertion Algorithm 

Input: Tuple (inserted trajectory point), HBSTR (existing index structure), Tthres (time threshold for 

continuous trajectory), Tcnode (time threshold for cache clearance) 

Output: updated index 
1. Search in Hash for the node corresponding to OID, TNode. 
2. If Time–EndTime (TNode) < Tthres Then 
3. Insert Tuple into TNode 
4. If TNode is not full Then 
5. Exit 
6. End If 
7. End If 
8. Use node-choosing sub-algorithm (Algorithm 2) to pick out the most suitable node in Level 1 of Rtree, Father, 

as the father of TNode and then insert TNode into Father 
9. If Father is overflown Then 
10. Use node-splitting sub-algorithm to divide child items of Father into two small nodes. This operation may lead to 

the overflow of upper-level nodes, and then recursively handle it even till root node 
11. End If 
12. OID and StartTime, which are the attributes of TNode, are combined as an index key OID/StartTime and inserted 

into Btree as an index entry 
13. Create a new leaf node, and append Tuple to it. Then replace TNode with this new leaf node in Hash 
14. Make a statistics for the number of nodes in cache, called NodesNum. If NodesNum surpasses the threshold, 

clear away the nodes in cache which have not been accessed for Tcnode 

HBSTR-tree uses Hash to find the leaf node, in which the tuple should be inserted. Only when the 

leaf node is full after insertion, the leaf node will be inserted into R-tree. Therefore, the worst case of 

the algorithm is the latter case. If node-choosing and node-splitting are atomic operations, the  

worst-case complexity of insertion algorithm is O(logN) because the tree depth is O(logN). The best 

case is that leaf node is not full and the tuple is straightly inserted into leaf node. The complexity in 

this case is O(1) because the main cost is to find the leaf node with Hash. Fortunately, the probability 

of the best case is M times greater than that of the worst case, in which M is the fanout-maximum 

capacity of leaf nodes. 

3.3. Node-Choosing Sub-Algorithm 

The node-choosing sub-algorithm in the HBSTR-tree is different from traditional ones. Firstly, it 

searches for the lowest-level nodes that completely contain the leaf node to be inserted into R-tree. 

Such lowest-level nodes may be in any level of R-tree or do not exist. Obviously, the child nodes of 

these lowest-level nodes will not contain the leaf node. Then, one node is selected from these child 

nodes, which will change the least after insertion of the leaf node. Finally, assuming that the selected 

node is the root node, the level-one node will be picked out in a top-to-bottom way by the original 

node-choosing procedure. This algorithm can avoid the erroneous result caused by node overlap. 

Algorithm 2 illustrates the node-choosing sub-algorithm procedure in pseudo code, which is 

implemented in non-recursive mode. Although this algorithm looks more complex than the recursive 

one, it is actually more efficient. Its time complexity is O(logN) corresponding to the tree depth. 

Although it may probe multiple paths to choose the proper node, it can help to generate smaller node 

coverage and better tree shape.  



Sensors 2014, 14 12998 

 

 

Algorithm 2. Pseudo code of node-choosing sub-algorithm. 

Algorithm 2 Description: node-choosing sub-algorithm (pick out one node at Level 1, into which TNode will 

be inserted) 

Input: TNode (leaf node to insert into R-tree), Root (the root of R-tree) 

Output: a level-one node (considered as the father of TNode) 
1. NodeSet.Clear()    : temporal node set is cleared off 
2. MinLevelID  Root.LevelID + 1  : let MinLevelID be tree depth initially 
3. Father  Root    : let Father be Root 
4. SeqArray[Father.LevelID]  0;  : let the Father.LevelIDth item in SeqArray be 0  
5. While Father != NULL Do 
6. Node  Father.IthChild (SeqArray[Father.LevelID]): let the ith child of Father be the current node 
7. If Node.Contain(TNode) = True Then  : if Node contains TNode 
8. If Node.LevelID = MinLevelID Then : if level number of Node is equal to MinLevelID 
9. NodeSet.Add(Node)   : add Node in NodeSet 
10. Else If Node.LevelID < MinLevelID Then : if level number of Node is less than MinLevelID 
11. NodeSet.Clear()   : clear NodeSet 
12. NodeSet.Add(Node)   : add Node in NodeSet 
13. MinLevelID  Node.LevelID  : let MinLevelID be level number of Node 
14. End If 
15. If Node.LevelID > 1 Then  : if level number of Node is greater than 1, enter the lower level 
16. Father  Node   : let Father be Node 
17. SeqArray[Father.LevelID]  0 : let the corresponding item in SeqArray 0 
18. Continue Loop   : restart new loop 
19. End If 
20. End If 
21. If Node.LevelID = 1 Or Node.Contain(TNode) = False Then  : if Node is at level 1 or Node doesn’t 

contain Leaf 
22. SeqArray[Father.LevelID]  SeqArray[Father.LevelID] + 1  : move to next child node 
23. While SeqArray[Father.LevelID] = Father.NumChildren Do : if finish traversing all child nodes 
24. Father  Father.ParentNode     : backspace to upper level 
25. If Father = NULL Then    : if finish traversing all child nodes of Root 
26. Break Loop   : exit loop 
27. End If 
28. SeqArray[Father.LevelID]  SeqArray[Father.LevelID] + 1  : start traversing the right sibling 
29. End While 
30. End If 
31. End While 
32. If NodeSet.IsEmpty() = True Then  : if NodeSet is null, there is no node to contain TNode 
33.  NewRoot  Root    : let NewRoot be Root 
34. Else If MinLevelID = 1 Then  : if there exist the required nodes at level 1 
35. NewRoot  LargestNode(NodeSet) : let NewRoot be the largest node in NodeSet 
36. Else 
37. Set is the collection of child nodes of all nodes in NodeSet. In Set, choose a node which will change the 

least after containing TNode. Let NewRoot be the node 
38. End If 
39. In the sub-tree whose root is NewRoot, search for a node in level 1 by classical node choosing algorithm.  
40. Output the node. Exit 
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4. Storage Scheme for Spatio-Temporal R-Tree Index 

In consideration of huge data volume, MongoDB is readily adopted as the storage tool for trajectory 

data and HBSTR-tree. MongoDB is a NoSQL-type DBMS, which has some capabilities key to  

Web 2.0 applications, such as cloud storage, good read/write performance and scheme-free. The 

elements in the structure of MongoDB include database, dataset, document and element. A dataset 

corresponds to a table in a traditional database. Documents are similar to records, but they are not 

required to have the fixed structures in one dataset. Hence, it can easily store data contents with varied 

structure, such as R-tree nodes. Elements are similar to fields. 

This section focuses on the storage scheme of spatio-temporal R-tree in MongoDB. The R-tree 

index is stored in a dataset. In order to be recognized easily, the name of the spatio-temporal index 

dataset is labeled by the name of a corresponding trajectory dataset with “.STI_Index” as a suffix. The 

metadata of the R-tree index includes some basic information, such as database name, dataset name, 

index dataset name, spatial dimensions, fan-out parameters of R-tree, node numbers, and root node’s 

ROWID. Root node’s ROWID is the only identity of root node document. Only via it, root node can be 

found in a database, and then the whole tree can be further visited. Every document in MongoDB has 

ROWID, which can be user-designated or allocated autonomously according to server, process and 

time, etc. It is an array of 12 characters, which is essential for MongoDB distributing storage.  

Table 1. Structure of index metadata document. 

Table 2. Description of MetaInfoData element. 

Element Type Description 

DBName string 
Name of DB which includes original dataset(for 

example, DBNAME.DATASETNAME) 

DatasetName string 
Name of original dataset corresponding to Index(for 

example, DBNAME.DATASETNAME) 
IndexDatasetName string Name of index dataset 
SpatioDimensions Int Spatial dimensions 
MaxNodesNum Int Maximum of fanout parameters in non-leaf node 
MinNodesNum Int Minimum of fanout parameters in non-leaf node 
MaxTuplesNum Int Maximum of fanout parameters in leaf node 
MinTuplesNum Int Minimum of fanout parameters in leaf node 
TotalNodesNum Int Number of the total nodes 

RidTreeRootNode ROWID ROWID of root node 

Table 3. Description of document structure for R-tree node. 

Element Type Description 

_id ROWID Unique ROWID of node 
NodeBufData BinData Node data in BinData type 

Element Type Description 

_id ROWID Identity of metadata document (999999999999) 
MetaInfoData BinData Includes a series of metadata 
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Table 4. Description of element structure for NodeBufData. 

Element Type Description 

LevelID Int Level number(leaf node belongs to Level 0) 

Interval SpatioTemporalInterval MBR of this node 
ridParentNode ROWID ROWID of father node 
NumChildren Int Number of child entries 

RidChildren Array(ROWID) 
If leaf node, here are ROWIDs of trajectory 
points; if non-leaf node, here are ROWIDs 

of child nodes 

On the condition of leaf node 

ObjectID ObjectIDType Object identity 

ChildPoints Array(SpatioTemporalPoint) 
Trajectory point array, whose size is 

NumChildren 

On the condition of non-leaf node 

ChildIntervals 
Arrary(SpatioTemporalInterval

) 
MBRs of child nodes, whose size is 

NumChildren 

In order to conveniently search for the metadata, metadata is stored together in one document whose 

ROWID is user-designated as “999999999999”. Besides metadata, every R-tree node is also a 

document in dataset. Nodes are classified into two types, leaf node and non-leaf node. Leaf node 

comprises consecutive trajectory points. Non-leaf node includes the entries of all its child nodes. For 

convenience’s sake, both node data and metadata are respectively organized into binary data block 

called BinData type as document elements. Given below is the storage scheme of spatio-temporal  

R-tree in HBSTR-tree as references. Table 1 introduces the document structure of the metadata of 

spatio-temporal R-tree, which has only one metadata document in the R-tree. Table 2 lists the elements 

of MetaInfoData in the metadata document, and MetaInfoData is a binary data block. Table 3 describes 

the document structure of R-tree node. One node, no matter whether or not it is a leaf node, 

corresponds to one document. Table 4 describes NodeBufData, which is an element of node document, 

and introduces the differences between leaf node and non-leaf node. 

5. Experimental Studies 

In this section, the technical aspects of the HBSTR-tree are tested, such as index generation and 

query process, and the experimental results are compared with those of TB*-tree. TB*-tree is chosen 

due to its superior performance in trajectory query [8]. TB*-tree originates from TB-tree and keeps its 

basic advantages in trajectory preservation. TB*-tree uses Guttman’s original algorithm to delete and 

reinsert the leaf nodes which are full. TB*-tree concerns both space dimensions and time dimensions 

in the same way, not like TB-tree which first focuses on time. Leaf nodes of TB*-tree belonging to the 

same object are connected with a double-linked list chronologically, which greatly helps searching for 

the trajectory efficiently and effectively. TB*-tree is optimized in this paper for fair comparison, and 

its leaf nodes will only be inserted into R-tree if HBSTR-tree is full, which will be more efficient than 

the original TB*-tree. 
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5.1. Experimental Setup 

The page size for spatio-temporal R-tree in HBSTR-tree is chosen to be 3 KB resulting in a fanout 

maximum capacity of 80 and 40 for the leaf and non-leaf nodes, respectively. The fanout minimum 

capacity for non-leaf nodes is 16, which is 40% of the maximum capacity. Because TB*-tree structure 

is almost the same as spatio-temporal R-tree in HBSTR-tree except the double-linked pointers in leaf 

nodes in TB*-tree, their fanout parameters can be set as the same. Double-type data (64-bit float) is 

used for Space coordinates and Time-type data (64-bit integer) for time coordinates. The experiments 

were done in a computer with 64-bit Window 7 Operating system, MongoDB (64-bits), CPU Intel 

Core I7-3770M 3.40 G, 8 GB RAM, and 1 TB hard disk (7200 rpm, 64MB cache). 

In order to achieve scalability in the cardinality of the datasets and study the behavior of the index 

structures under several settings, we used the Brinkhoff’s spatio-temporal data generator, which are 

widely used to generate synthetic datasets for benchmarking spatio-temporal database [17]. The details 

of the experimental datasets are given in Table 5. The four datasets in different scales are generated 

based on the road network data of City of Oldenburg, Germany, and they exist in the same  

spatio-temporal scope. The four datasets cover the same time and space range, and include the 

different scales of objects and trajectory points. 

Table 5. Description of experimental datasets. 

Name # Time Stamps xmin, ymin, xmax, ymax # Objects # Entries 

O5000K 1000 281, 3935, 23854, 30851 14000 5271991 

O10000K 1000 281, 3935, 23854, 30851 26000 10579838 
O20000K 1000 281, 3935, 23854, 30851 48000 20845388 
O40000K 1000 281, 3935, 23854, 30851 90000 40819855 

5.2. Time Performance and Storage Efficiency of Index Generation 

Trajectory databases are commonly of huge volume, so index generation performance is a very 

crucial aspect. A comparative experiment is made between TB*-tree and HBSTR-tree. The quadratic 

split strategy in original R-tree is adopted in these two trees. Table 6 is the experimental results for 

index generation, including time cost and storage cost. Take Dataset O5000K as example. TB*-tree 

costs 439 s to build index whereas HBSTR-tree costs 454 s. Here, time costs cover the time taken to 

access original data and store index data.  

Table 6. Experimental results of index generation (Dataset O5000K). 

Index 
Time Cost 

(s) 
# Node Pages # Node Choosing 

# Node 
Splitting 

Storage Costs 
(M) 

TB*-tree 439 76652 73734 2918 217 
HBSTR-tree 454 76814 73734 3080 221 (216 + 5) 
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Assuming that N is the number of entries (trajectory points) and M is the fanout maximum capacity 

of leaf nodes, time complexity of both TB*-tree and HBSTR-tree generation is O(N/M) if the insertion 

operation is considered as an atomic operation. R-tree insertion operation is time-costing which 

includes node-choosing and node-splitting. The node-choosing operation in HBSTR-tree is a little 

more complex than TB*-tree, and their time complexities are O(ࡹࢍ࢕࢒  Except for spatio-temporal .(ࡺ

interval criterion, their node-splitting procedures are identical to the original R-tree, so the time 

complexity is O(L2) (assuming that L is the fanout maximum capacity of non-leaf nodes). The number 

of node-choosing and node-splitting in the process of building HBSTR-tree is a little greater than  

TB*-tree, so the time cost of HBSTR-tree is higher. Interestingly, the number of node-choosing 

operations is equal to the number of leaf nodes, and the number of node-splitting operations is equal to 

the number of non-leaf nodes. 

An often neglected aspect in benchmarking access methods is data size of index structures. 

HBSTR-tree has one in-memory sub-index (Hash) and two in-disk sub-indexes (R-tree and B*-tree), 

so its storage cost is the sum of R-tree and B*-tree. For Dataset O5000K, the data size of TB*-tree is 

217 MB, whereas that of HBSTR-tree is 221 MB where the sizes of two sub-indexes are 216 MB and 

5 MB, respectively. Because the fanout minimum capacity in non-leaf nodes is 16, the majority of 

those nodes in R-tree, over 94%, are leaf nodes. Most leaf-node pages in HBSTR-tree can be fully 

utilized because of the HBSTR-tree mechanism. In HBSTR-tree, the compound B*-tree only indexes 

leaf nodes of R-tree, and the index key is OID/timestamp of leaf nodes, so its storage cost is subtle as 

opposed to R-tree. For trajectory preservation, the B*-tree keeps the double-linked list among leaf 

nodes, which need extra space. As opposed to the original dataset whose size is 675 MB, both the 

TB*-tree and HBSTR-tree are compressed greatly.  

5.3. Spatio-Temporal Range Query Process 

The most common operation in trajectory database is to search for trajectory points in  

spatio-temporal ranges. This section presents performance comparisons and analyses about range 

queries between TB*-tree and HBSTR-tree. We use the following set of three range queries (Q1–Q3): 

three sets of 100 random query windows with 1%, 2% and 4% of every axial range of the valid space, 

respectively, over the synthetic data increasing the number of trajectory points and moving objects 

(O5000K–O40000K datasets).  

The average of 100 window queries is considered as the test result. The experimental results of 

range queries in different scales are illustrated in Figure 3. Obviously, HBSTR-tree has superior range 

query performance over its competitor regarding the queries with sizes of 1%(Q1), 2%(Q2) and 

4%(Q3) of every valid axial range. TB*-tree and HBSTR-tree have the same set of leaf nodes, and the 

leaf nodes in both trees hit by range query are identical too. When the query range is greater, the leaf 

nodes will be more easily hit and cover greater percentage of the total accessed nodes. Meanwhile, leaf 

nodes are far more than non-leaf nodes. As a result, when the query range becomes greater, the 

absolute difference in the number of accessed nodes will still increase but the relative difference  

will decrease.  
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Figure 3. Spatio-temporal range queries (left) Q1(1%); (middle) Q2(2%); (right) Q3(4%). 

 

5.4. Trajectory Query for Targeted Object 

The most common operation is to find trajectories of targeted objects in a period of time. One 

hundred moving objects are randomly selected from the four datasets, and then 10% of their life cycle 

is randomly selected as the query conditions in our experiments about trajectory query. Table 7 

illustrates the experimental results over those four datasets. The average of node accesses in these 100 

trajectory query operations is summed up.  

Table 7. Node accesses in trajectory queries. 

Index Type 
Node Accesses 

O5000K O10000K O20000K O40000K 

TB*-tree 52 77 122 178 

HBSTR-tree 5(2+3) 5(2+3) 5(2+3) 5(2+3) 

In HBSTR-tree, B*-tree sub-tree directly locates the first leaf node which satisfies query condition, 

then scan backwards and output the required leaf nodes one by one, so that redundant node accesses 

are avoided. On the contrary, TB*-tree searches the tree structure from the root node. After the first 

targeted leaf node is hit, the double-linked list between leaf nodes will be used to find the satisfying 

leaf nodes. Obviously, this search procedure is not stable and sometimes may traverse the whole tree. 

Since 10% of consecutive trajectory points of an object exist in one or two leaf nodes, the HBSTR-tree 

only needs to access one or two leaf nodes. In addition to this, B*-tree sub-index need be accessed. 

The node access of B*-tree should be also concerned in evaluating trajectory queries. If the maximum 

number of keys in a B*-tree node is 100, the level number of B*-tree for O5000K, O10000K, 

O20000K and O40000K is 3. During a search operation, one node in each level of B*-tree is accessed. 

6. Conclusions 

A trajectory database is usually of a large volume, and the data distribution is skewed in space-time. 

Meanwhile, real-time response speed and rich semantics are urgently needed for trajectory queries in 

nowadays’ applications. This paper presents a novel trajectory indexing method, which synthesizes the 

advantages of R-tree, B*-tree and Hash table. A new spatio-temporal interval criterion and a novel 

node-choosing algorithm are proposed to improve the spatio-temporal R-tree sub-index. This index has 

good generation efficiency, and outperforms TB*-tree in several aspects, such as range query and 
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targeted trajectory query. Meanwhile, it satisfies real-time update and supports common trajectory 

query types. Moreover, this paper proposes a practical database scheme based on MongoDB, which 

belongs to NoSQL DBMS and supports cloud storage. 

Large-scale, real-time trajectory data management is a key technique in intelligent transportation 

systems and social network services. The further work will focus on process simulation and analysis 

for complex geoscience problems, which benefits urban management and policy decisions. 
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