
Abstract
This paper presents a triangulation-based hierarchical image
matching method for wide-baseline images. The method
includes the following three steps: (a) image orientation by
incorporating the SIFT algorithm with the RANSAC approach,
(b) feature matching based on the self-adaptive triangle
constraint, which includes point-to-point matching and
subsequent point-to-area matching, and (c) triangulation
constrained dense matching based on the previous matched
results. Two new constraints, the triangulation-based
disparity constraint and triangulation-based gradient
orientation constraint, are developed to alleviate the match-
ing ambiguity for wide-baseline images. A triangulation
based affine-adaptive cross-correlation is developed to help
find correct matches even in the image regions with large
perspective distortions. Experiments using Mars ground
wide-baseline images and terrestrial wide-baseline images
revealed that the proposed method is capable of generating
reliable and dense matching results for terrain mapping and
surface reconstruction from the wide-baseline images.

Introduction
Most methods for terrain mapping or surface reconstruction
from ground stereo vision are based on hard-baseline (or
fixed-baseline) stereo imaging systems, in which stereo
cameras are mounted on a rigid camera bar with a stereo
base generally from several centimeters to half a meter (Li
et al., 2004 and 2007; Di and Li, 2007; Wu, 2006). For hard-
baseline stereo vision, the image matching is relatively easy.
This is because the disparities and local pattern distortions
on the stereo images are relatively small, which allows for
limiting the matching search area using simple constraints
such as the epipolar geometry and obtaining matching results
using the standard similarity functions such as the Normal-
ized Cross-Correlation (NCC) method (Helava, 1978). How-
ever, hard-baseline stereo vision can only be used to map the
nearby terrain surrounding the imaging systems (for example,
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up to 100 m for a stereo imaging system with a hard baseline
of 30 cm) due to the fact that the depth estimation errors
from stereo vision are directly proportional to the square of
the distance from the camera to the targets and inversely
proportional to the baseline (Wu, 2006; Olson and Abi-
Rached, 2009). However, mapping distant terrain (several
hundred meters from the camera) is sometimes required, for
example, mapping tasks in remote and unreachable environ-
ments such as deserts, polar areas, and areas after natural
disasters. In these cases, wide-baseline stereo vision is
employed. For wide-baseline stereo vision, the imaging
system takes images of the same scene from different loca-
tions using the same camera to form a wide baseline (a few
meters to dozens of meters), which enables mapping of
distant targets as far as a few hundred meters from the
cameras with an acceptable accuracy (Olson et al., 2003;
Olson and Abi-Rached, 2005 and 2009; Di and Li, 2007).

The wide-baseline stereo vision improves the accuracy
of the depth for distant terrain; however, it introduces
significant difficulties for stereo matching between the
stereo images. Wide-baseline stereo vision is difficult for
two reasons. First, there is poor knowledge regarding the
relative position and orientation information between the
images taken at the two ends of the baseline, compared to
the situation of the hard baseline case. Second, the change
in perspective makes stereo matching difficult since the
image textures of the same objects change significantly in
the two images due to different viewpoints. Figure 1 shows
examples of wide-baseline images from a wide-baseline
mapping task in Duck Bay area of Victoria Crater on Mars.
The images were taken by the Opportunity rover of the
Mars Exploration Rover (MER) 2003 mission and were
downloaded from NASA’s Planetary Data System (PDS). The
wide baseline for the images is about 5.5 m. Figure 1a
shows the sand dunes close to the center of Victoria Crater.
The mapping area is about 300 m from the camera location.
Repetitive and homogeneous textures are commonly seen in
the sand dune areas. Figure 1b shows the crater wall, which
is about 60 m from the camera location. Distinct occlusions
and surface discontinuities can be found in the image pairs.
Figure 1c shows the slope area on the crater wall, which is
about 20 m from the camera location. As the observed
distance is relatively short, the image textures change
significantly due to the different viewpoints.
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Wide-baseline stereo vision is not commonly used in
photogrammetry and computer vision for terrain mapping and
surface reconstruction due to the above difficulties. Olson
et al. (2003) presented an endeavor for this task. They
proposed a framework to process the Mars ground
wide-baseline images to generate density disparity maps.
The method depends on the initial orientation parameters of
the images and uses very sparse feature-matching results to
determine the motion of the images. The matching is based
on a maximum likelihood function. Zhu et al. (2005)
presented a new image matching method based on a
self-adaptive triangle constraint, which was used for stereo
aerial image matching (Wu, 2006; Zhu et al., 2007a) and
close-range terrestrial image matching with a hard baseline
and it proved able to produce reliable matching results.
However, for wide-baseline images, it is much more difficult
to obtain reliable matching results due to the difficulties
addressed above. Therefore, this paper presents a

triangulation-based hierarchical image matching method to
improve the reliability and automation of wide-baseline image
matching based on the previous work (Wu, 2006; Zhu et al.,
2005 and 2007a).

After providing a literature review on how to improve
the reliability of wide-baseline image matching, a triangula-
tion-based hierarchical image matching method for wide-
baseline images is presented in detail. Three data sets of
wide-baseline images (Figure 1) collected on Mars are
employed for experimental analysis. Two pairs of terrestrial
wide-baseline images and the associated lidar point cloud
data are used for quantitative evaluation of the developed
method. Finally, concluding remarks are presented and
discussed.

Related Work
Image matching is a challenging and often ill-posed prob-
lem, especially for wide-baseline images. During the past
decades, a few endeavours have been devoted in the field of
photogrammetry and computer vision to improve the
reliability, automation, and efficiency of wide-baseline image
matching which can be generally categorized into two
classes based on the matching primitives. One is feature-
based matching and the other is area-based matching.

1. Feature-based Matching: The most well-known method for
image matching between images with large perspective or
scale changes is the scale invariant feature transform (SIFT)
method (Lowe, 1999 and 2004). SIFT combines a scale
invariant interest point detector and a descriptor based on
the gradient distribution in the detected local regions. The
interest points are detected based on local 3D extrema in the
scale-space pyramid built with difference-of-Gaussian (DOG)
filters, which is invariant over a wider set of transforma-
tions, especially scale change (Lowe, 1999). In the SIFT
descriptor, each interest point is characterized by a vector
with 128 unsigned eight-bit numbers generated from a local
region, which defines the multi-scale gradient orientation
histogram. The similarity is measured by comparing the two
vectors associated with the two matching points (Lowe,
2004). The SIFT descriptor provides robustness against errors
caused by orientation issues and small geometric distortions.
However, it can only detect blob-like interest points
(Mikolajczk and Schmid, 2004) and produce relative sparse
matching results (Zhu et al., 2007b). Lingua (2009) analyzed
the SIFT method for photogrammetric applications and
determined that SIFT is a good method for automatic tie
point extraction and coarse DSM (Digital Surface Model)
generation. After the Wenchuan earthquake in China on 12
May 2008, many aerial images were collected without
regular flight tracks and camera orientations. The relative
orientation cannot be precisely carried out using traditional
methods under these circumstances. The SIFT method was
adopted for down-sampled images to obtain coarse but
robust relative orientation parameters, which was very
important for further processing (Zhang et al., 2009). In
addition to SIFT, other scale and affine invariant feature
detection and matching methods have been presented in the
past (Tuytelaars and Van Gool, 2000; Matas et al., 2004;
Mikolajczyk and Schmid, 2004 and 2005). Automatic image
orientation becomes possible even with close range images
under disorder (Snavely et al., 2008). However, the matching
results from these methods are relative sparse and cannot
provide sufficient correspondence for detailed terrain
mapping.

2. Area-based Matching: Area-based matching usually works
directly on local image windows, and it can acquire dense
correspondences (Lhuillie and Quan, 2002). However, for
wide-baseline images, the conventional area-based image
matching cannot obtain accurate and dense matching results
due to the image perspective distortions, for example, caused
by a wide baseline. Megyesi and Chetverikov (2004)
presented an affine matching method for wide-baseline

696 J u l y  2011 PHOTOGRAMMETRIC ENGINEER ING & REMOTE SENS ING

Figure 1. Stereo wide-baseline images at Duck Bay area
of Victoria Crater on Mars downloaded from PDS: (a) data
set 1, (b) data set 2, and (c) data set 3. In each
dataset, the left image was acquired at the first camera
location and the right image at the second location at a
distance of about 5.5 m.



images that accounts for local affine distortion and
propagates the best matching affine parameters on each
surface until a surface discontinuity is reached. Kannala and
Brandt (2007) reported a matching propagation strategy to
obtain quasi-dense matching results from wide-baseline
images. It depends on an intensity moment to adapt the
current estimates of the local affine transformation. This
iterative estimation is very time consuming. Olson and Abi-
Rached (2005 and 2009) used a maximum likelihood method
to obtain a density map from terrain images. This method is
based on time-consuming global optimization. Strecha et al.
(2003) presented a multi-view wide-baseline stereo system
for the reconstruction of precise 3D models. Based on a few
sparse set of initial depth estimates, an algorithm was
developed to propagate these initial depth estimates by an
inhomogeneous time diffusion process, which is guided by a
properly weighted matching energy that takes into account
the matching to all views. Tola et al. (2008 and 2010)
developed a method entitled DAISY for wide-baseline image
matching, which is similar to the SIFT method. It has to
calculate a high dimensional descriptor for every pixel and
is thus time consuming.

Feature-based image matching obtains robust but sparse
matching results, while area-based matching can obtain
dense matching results but the matching reliability may
depend on the texture conditions of the images. Therefore,
this paper presents a triangulation-based hierarchical image
matching method for wide-baseline images that incorporates
the merits of both the feature-based matching and the area-
based matching methods and produces reliable and dense
matching results with high efficiency and automation. The
details are described in the following sections.

Triangulation-based Hierarchical Image Matching 
for Wide-Baseline Images
The triangulation-based hierarchical image matching
method firstly employs a SIFT algorithm and the RANSAC
approach to obtain a few robust correspondences on the
wide-baseline images, and then calculates the relative
orientation parameters of the images. The robust corre-
spondences obtained are then used to generate initial
Delaunay triangulations. Then, interest point matching is
carried out based on the self-adaptive triangle constraints
(Wu, 2006; Zhu et al., 2005 and 2007a). The interest point
matching starts by detecting interest points using a Harris-
Laplace detector (Zhu et al., 2007b) within a pair of
triangles in the initial triangulations, then matches these
interest points under the triangle constraint, and obtains a
pair of corresponding points with maximum reliability.
After that, the method inserts the newly matched corre-
sponding points into the triangulations and updates the
triangulations dynamically, then handles the next pair of
triangles and repeats the same process until the termina-
tion conditions (the triangles are small enough or cannot
match successfully for at least one pair of points) of the
matching propagation are met. Because the most distinc-
tive point is always successfully matched first, the
dynamic updating of triangulations is just the process of
self-adaptive matching propagation. This local geometry
constraint of triangles can adapt to the changes in image
texture automatically and will finally produce more
reliable matching results (Wu, 2006; Zhu et al., 2005 and
2007a). After interest point matching, the same process is
repeated to match the remaining interest points in one
image with all the pixels in another image. Then, dense
matching is performed based on the triangulations gener-
ated from the previous matched points and finally match-
ing results are obtained. This hierarchical image matching
strategy incorporates the merits of both the feature-based

matching, and the area-based matching and has the
capability of generating reliable and dense matching
results efficiently. The framework of the method is illus-
trated in Figure 2.

Based on the previous work on self-adaptive triangle-
constrained image matching (Wu, 2006; Zhu et al., 2005 and
2007a), this paper highlights the following three innovations
particularly developed for the purpose of matching wide-
baseline images: (a) robust image orientation enabling wide-
baseline image matching without knowing any prior infor-
mation such as the image orientation parameters,
(b) triangulation-based disparity constraint and triangulation-
based gradient orientation constraint, which help alleviate
the matching ambiguity, and (c) triangulation-based affine-
adaptive cross-correlation (TAACC), which enables finding
correct matches even in the image regions with large
perspective distortions. The following sections will describe
the details of the method.

Image Orientation
Since the wide-baseline images are taken at different locations,
the illumination environment may change and the contrast
may be different for the image pairs. Therefore, an image
preprocessing (image enhancement) is performed before the
image orientation. The Wallis filter (Pratt, 1991) is employed
to enhance and sharpen the texture patterns and increase the
signal-to-noise ratio. After enhancement, the texture details are
enriched in both low- and high-level contrast regions which
will be helpful for the subsequent processing.
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Figure 2. Framework of the triangulation-based
hierarchical image matching method.



Image orientation has been studied thoroughly in
photogrammetry and computer vision (Zhang, 1998;
Stewénius et al., 2006). It is the process to solve the relative
relation or orientation between two images of the same
scene from which the epipolar geometry can be determined.
This allows matching adjacent points in multiple images
without knowing anything about the position of the camera.
The fundamental matrix, describing the relation between
two overlapping images, is a compact way of representing
the epipolar geometry of the two images. In this paper,
image orientation for wide-baseline images is achieved using
the matched key points generated by the SIFT algorithm
(Lowe, 1999 and 2004). A RANSAC approach (Fischler and
Bolles, 1981) is used to remove the possible mismatches.
A least squares algorithm (Hartley and Zisserman, 2003) is
employed to calculate the fundamental matrix.

SIFT Matching
As mentioned previously, the SIFT algorithm (Lowe, 1999
and 2004) is a good solution to identify corresponding
points on images with large perspective or scale changes.
Therefore, the SIFT algorithm is used to find some key
corresponding points on the wide-baseline images. Figure
3a, 3c, and 3e show the SIFT matching results for the
experimental data sets illustrated in Figure 1 in which the
white lines indicate the matched point pairs between the
image pairs. From the matching results, there are some

“messy”lines that may indicate mismatches. These mis-
matches must be removed for the calculation of an accurate
fundamental matrix. The RANSAC approach as described in
the following section is used for this purpose.

RANSAC Approach
RANSAC (Fischler and Bolles, 1981) is an algorithm used to
derive a usable model from a set of data that contains both
inliers and outliers. The RANSAC algorithm starts by ran-
domly selecting an instance of the data, which the algo-
rithm supposes is a part of the inliers. A model is then
built assuming that the chosen instance is an exact
instance of the model. This model is then used to deter-
mine how much of the remaining data fits the model by
determining whether each instance of the data fits reason-
ably well to the model, i.e., seeing if it is an inlier. This is
used as a criterion to determine the best model which has
the largest number of inliers. This process is repeated for
every instance of the data to find the overall best model.
This model is then recalculated using all of its inliers,
instead of just using the single data instance, to produce a
more accurate model.

In this case the outliers come from the possible mis-
matches from the SIFT matching results. RANSAC is adopted
to exclude the outliers (Hartley and Zisserman, 2003). At
first, seven samples from the SIFT-matching results are
selected randomly, and a fundamental matrix is then
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Figure 3. SIFT matching and outlier removal using the RANSAC approach on the
wide-baseline images: (a) SIFT matching results for data set 1, (b) results after outlier
removal for data set 1, (c) SIFT matching results for data set 2, (d) results after outlier
removal for data set 2, (e) SIFT matching results for data set 3, and (f) results after
outlier removal for data set 3.



calculated using these samples. After that, the number of
inliers is calculated that are consistent with the previously
calculated fundamental matrix. The algorithm then repeats
the previous step and chooses the fundamental matrix with
the largest number of inliers and the outliers are finally
removed. Figure 3b, 3d, and 3f show the results after
RANSAC processing, in which the mismatches are effectively
removed.

Calculation of the Fundamental Matrix
Because the SIFT algorithm mainly detects blob-like features
(Mikolajczk and Schmid, 2004), there may be shifts existing
between the blob centers and their accurate corresponding
point locations. Therefore, a least squares process (Gruen,
1985) is employed here to refine the SIFT matching results.
After that, the fundamental matrix is calculated by using a
least squares algorithm (Hartley and Zisserman, 2003) using
the successfully matched key points.

To evaluate the accuracy of the image orientation
results, all the matched key points are divided randomly
into two groups. One group is used as control points to
calculate the fundamental matrix, and the other group is
used as checkpoints to calculate the residual r according to
the following equation (Hartley and Zisserman, 2003):

(1)

where are a pair of matched points, and N is the
number of matched points used for checkpoints; is the
fundamental matrix calculated from the control points; is
the transpose of , , and give the distance
from the point to its corresponding epipolar line determined
by the fundamental matrix.

Table 1 displays the image orientation results for all
three data sets, and shows that the residuals are about
0.2 pixels. This proves the good performance of the
proposed image orientation method.

Triangulation-based Feature Matching
The triangulation-based feature matching includes two steps.
The first step is a point-to-point matching that only matches
the interest points detected in both images. The second step
is a point-to-area matching based on the previous point-to-
point matching results which uses the remaining interest
points in one image and searches for their correspondence
using all the pixels in another image.

Triangulation-based Point-to-Point Matching
Before the point-to-point matching, interesting points need to
be detected. A Harris-Laplace detector (Mikolajczk and
Schmid, 2004; Zhu et al., 2007b) is used here instead of using
the SIFT method. This is because SIFT mainly detects blob-like
points (Mikolajczk and Schmid, 2004) while the significant
points such as corners and highly textured points may not be
able to be successfully detected, and this disadvantage is
critical to the subsequent terrain mapping and reconstruction.
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The Harris-Laplace detector (Mikolajczk and Schmid, 2004;
Zhu et al., 2007b) responds to corners and highly textured
points. It can detect interest points also invariant to scale,
computing a multi-scale representation for the Harris interest
point detector and then selecting points at which a local
measure (the Laplacian) is maximal over scales.

In addition to the epipolar constraint determined by the
previous image orientation process and the adaptive triangle
constraint, this paper investigates the following new con-
straints and strategies particularly designed for wide-
baseline image matching.

(1) Triangulation-based Disparity Constraint
After image orientation processing, there are a few
matched key points generated from the SIFT method. These
matched key points are then used to generate a pair of
initial Delaunay triangulations that serve as constraints for
the subsequent image matching. Each triangle in the
triangulations is considered as a local smooth area, and
the disparity of the corresponding points within the
triangle area should have some relationships with the
disparity of the triangle vertex (Pollard et al., 1986; Zhu
et al., 2005).

In Figure 4, triangle abc and a�b�c� are a pair of corre-
sponding triangles in the left (Figure 4a) and right image
(Figure 4b), respectively; a and a� are a pair of triangle
vertices, and is a point close to ; f and f� are a pair
corresponding points. Under the assumption of local smooth
constraint, the disparity gradient of a and f should satisfy
the following equation:

(2)

where and are the disparity of and a, respectively, 
is the distance from to ; is a predefined value 

within the range of (0.66, 1) which is given by Pollard et al.
(1986).

In other words, if f and its corresponding point f� meet
the disparity gradient constraint, f� should be located in a
circle with the center of and the radius of .

For wide-baseline images taken on the
ground, the disparities in different image regions change
differently with respect to the distance from the targets to
the camera locations. The farther from the camera, the
smaller the disparity, which results in the upper part of the
image generally having a smaller disparity than the bottom
part. Figure 5 shows the disparity changes for data set 3.
A line drawn from top to bottom in Figure 5a indicates a
profile from far to close regions. The corresponding profile
is identified in Figure 5b, from which increasing parallax
can be found from top to bottom.

Based on the above analysis, the r value in Equation 2
has been reconsidered to be adaptive to the wide-baseline
images. The following heuristic values are suggested based

rDistfaf � ra

rafDistfa

frarf

|rf � ra| … rDistfa
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TABLE 1. IMAGE ORIENTATION RESULTS FOR THE THREE DATA SETS

Number of Number of 
Data Set Control Points Check Points Residual (pixel)

Data Set 1 532 532 0.206
Data Set 2 112 112 0.156
Data Set 3 199 200 0.131

Figure 4. Disparity gradient: (a) left image, and (b) right
image.



on the experiments using images with moderate wide
baseline of a few meters:

(3)

where y is the y-coordinate of the detected interest point in
the image space and height means the image height.

(2) Triangulation-based Gradient Orientation Constraint
Another new constraint, triangulation-based gradient
orientation constraint, is used in this method that is based
on an assumption that the gradient orientation between
correspondences should be similar to each other within a
local area in the image pair. Figure 6 shows an enlarged
region on data set 3 where the corresponding triangula-
tions generated from the matched corresponding points are
shown on the image. Each pair of corresponding vertexes
in the triangulations has an index number, and their
gradient orientations are marked with arrows starting from
the vertexes. From Figure 6, similar gradient orientations
can be found for all the corresponding vertexes in the left
(Figure 6a) image and the right (Figure 6b) image.

For each pair of corresponding triangles, the differentia-
tions of the gradient orientations for the three vertexes can
be calculated and a median differentiation can be derived.
Figure 7 shows the statistics of the median differentiation of
the gradient orientation for all the corresponding triangles in
the initial corresponding triangulations for data set 3

r �  
0.66 if (y 6 0.33 * height)
0.75 if (0.33 * height … y 6 0.66 * height)
1 if (y Ú 0.66 * height)

generated from the matched points in image orientation. As
shown in Figure 7, the majority of the median differentia-
tions are close to zero, which means the majority of the
gradient orientations for the corresponding triangle vertexes
are consistent. Only a very few are different, which may be
related to significant image texture changes in a local region
or possible mismatches.

Therefore, the median differentiation of gradient
orientations for each pair of corresponding triangles is used
to help find correct matches within this pair of correspon-
ding triangles. In the image matching process, the variance
of the median differentiation for all the corresponding
triangles in the initial corresponding triangulations is
calculated, and is used as a threshold in the subsequent
image matching for the gradient orientation constraint.

(3) Triangulation-based Affine-adaptive Cross Correlation
(TAACC)
In the original self-adaptive triangle constrained image
matching method (Wu, 2006; Zhu et al., 2005 and 2007a), an
NCC (Normalized Cross-Correlation) method (Helava, 1978;
Lhuillie and Quan, 2002) was used to measure the similarity
of the corresponding points. However, the traditional NCC is
based on rectangular correlation windows and is not
invariant to rotation and scale changes. Therefore, this paper
developed a triangulation-based affine-adaptive cross
correlation (TAACC) for similarity measurement in which the
correlation windows of the matching points are warped
before the calculation of their similarity according to the
affine transformation parameters propagated from the
surrounding triangles.

As illustrated in Figure 8, for each pair of corresponding
triangles and , the affine transformation parame-
ters are calculated by using itself and its adjacent three 
triangles . Six pairs of corresponding 
points a-a�, b-b�, c-c�, e-e�, f-f�, and g-g� are used to calculate 
the affine transformation parameters of the triangle pair

and . Assuming a�, b�, and c� are the locations
calculated using the derived affine transformation parame-
ters from a, b, and c. The residuals da, db, and dc can be
calculated by comparing the distances between a�-a�, b�-b�,
c�-c�. The mean value of the residuals 
for the three vertexes can be calculated. If the mean residual

is less than a predefined threshold (e.g., three pixels), the
affine distortion is assumed to be able to be compensated by
the calculated affine transformation parameters. Then, a
warp process for the correlation windows is performed to
compensate the rotation and scale changes. For efficient
calculating, only the four corners of the correlation window
in the searched image are calculated using the affine

�d

�d � (da � db � dc)/3
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Figure 5. Disparity changes from top to bottom on data
set 3: (a) left image, and (b) right image.

Figure 6. Gradient orientation of the corresponding vertex for data set 3: (a) left image, and (b) right image.
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transformation parameters. The image coordinates of the rest
of the pixels in the correlation window are interpolated by a
bilinear interpolation method; their gray values are interpo-
lated from the search images again using the bilinear
interpolation method.

Figure 9 shows the detailed results of TAACC. In Figure
9, the matched points are marked using crosses. The small
rectangle in Figure 9b is the correlation window on the left
image for point 1. If there is no such a process of using
TAACC, the correlation window for its corresponding point 1�
on the right image (Figure 9c) will be the same with the one
on the left image (Figure 9b). After using TAACC, a distorted
rectangle is calculated from the affine transformation
parameters as illustrated in Figure 9c. For the corresponding
points 1 and 1�, the correlation value without considering
the affine transformation is 0.85. After warping the correla-
tion windows using the triangulation-based affine transfor-
mation parameters, the correlation value increases to 0.94.
Another example is shown in Figure 9d and 9e. The small
rectangle in Figure 9d is the correlation window for point 2,
and the distorted rectangle in Figure 9e is the correlation
window of its corresponding point 2�, which is calculated
from the affine transformation parameters. For the corre-
sponding points 2 and 2�, the correlation value without
considering the affine transformation is 0.72. After warping
the correlation windows using the triangulation-based

affine transformation parameters, the correlation value
increases to 0.95.

However, sometimes the affine distortion cannot be
compensated by the affine transformation parameters as
described above, i.e., the mean residual is larger than a
predefined threshold. In this case, the correlation window in
the searched image is determined using an alternative method
similar to the method presented by Megyesi and Chetverikov
(2004) and Xu et al. (2009) which is an iterative process to
scale and rotate the correlation window step by step until the
correlation values stop increasing. This method provides
more accurate correlation windows and is ideal for the local
regions with significant affine distortions; however, it is
extremely time consuming. Therefore, this paper uses a
combination of the triangulation-based affine estimation and
the iterative affine estimation to improve both the matching
reliability and efficiency. According to the experiments using
the three data sets, a majority of the affine distortions can be
estimated using the triangulation-based method and only 2
percent, 12.4 percent, and 12.0 percent of the feature match-
ing are performed using the iterative method for data sets 1,
2, and 3, respectively.

The actual image matching propagation takes place as
follows. Assuming the left image is the reference image and
the right image is the searched image, the algorithm chooses
one interest point with maximum interest strength (Zhu et
al., 2007a) in a selected triangle on the reference image.
After that, potential correspondences are obtained under the
triangle constraint, triangle-based disparity constraint,
triangle-based gradient orientation constraint, and epipolar
constraint. If there is no corresponding point found under
the constraints, turn to the next interest point. If multiple
potential corresponding points are obtained, triangulation-
based affine estimation or iterative affine estimation is used
to calculate the affine transformation parameters. The
matching scores are obtained by warping the correlation
window in the reference images using the calculated affine
parameters. The corresponding point with the highest
matching score is chosen as the matching hypothesis for the
left-to-right matching. And then, a right-to-left matching
with the same process is carried out. If the matching result
from the left-to-right image is consistent with the matching
from the right-to-left image, the algorithm accepts this
matching result. Otherwise, the algorithm ignores the
matching result and turns to the next interest point. The
same process is repeated and newly matched corresponding
points are inserted in the corresponding triangulations until
the termination conditions of the propagation are met.
Details about the implementation of the self-adaptive
triangle-constrained image matching method can be found in
Wu (2006) and Zhu et al. (2005 and 2007a).

Plate 1 shows the point-to-point matching results for
data set 1, 2, and 3. As seen in Plate 1, the matched corre-
sponding points are visually accurate but sparse. Disparity
maps interpolated from the matched points are used to
evaluate the performance of the image matching as illus-
trated in Plate 1b, 1d, and 1f. Bright values represent larger
disparities (discard the black background). Significant
brightness changes within a local region in the disparity
maps may indicate possible mismatches except those
situations where there are stand-alone objects existing in the
image, such as the rocks close to the bottom in Plate 1a. The
disparity maps are relatively smooth but apparently they do
not provide enough details.

Triangulation-Based Point-to-Area Matching
For wide-baseline images, the repeatability rate of the interest
points (Zhu et al., 2007b) detected in the stereo pairs may be
low due to the large perspective changes. This will result in
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Figure 7. Histogram of median differentiation of the
gradient orientation for all the corresponding
triangles in the initial corresponding triangulations
for data set 3.

Figure 8. Affine distortion estimation based on
corresponding triangulations: (a) left triangulation, and
(b) right triangulation.



sparse matching results if only matching the detected interest
points in the stereo images. Therefore, this paper presents a
point-to-area matching based on the previous point-to-point
matching results. The point-to-area matching uses the remain-
ing interest points (after the point-to-point matching) in one
image and searches for their correspondence in all the pixels
in a local area in another image.

In this case, the corresponding triangulations generated
from the previous point-to-point matching results are denser
than the initial corresponding triangulations for point-to-
point matching, and they provide stronger constraints for
point-to-area matching. The matching propagation is similar
to the previous point-to-point matching. For an interest
point in a triangle on the reference image (e.g., the left
image), the algorithm searches for matching candidates in all
the pixels along the epipolar line inside the corresponding

triangle on the searched image (e.g., the right image). Again,
the triangle constraint, triangle-based disparity constraint,
triangle-based gradient orientation constraint, and epipolar
constraint are employed to help find correct matches. The
triangulation-based affine estimation or the iterative affine
estimation is used to define the correlation window on the
searched image. For all the pixels that satisfy the previously
mentioned constraints, their matching scores are calculated
based on the warped correlation window and then a match-
ing-score curve is obtained. If the highest matching score is
larger than a predefined threshold (e.g., 0.8) and the ratio of
the highest matching score to the second highest matching
score is larger than a predefined threshold (e.g., 1.25), the
correspondence is considered to be a matching hypothesis.
And if the hypothesis passes the right-to-left consistency
check, the correspondence is accepted as a correct matching.
Then, the newly matched points are inserted into the
triangulations. The matching propagation will be terminated
after all the detected interest points in the reference image
are examined.

Plate 2 shows the point-to-area matching results for data
set 1, 2, and 3. As can be seen from Plate 2, the matched
points are much denser than the previous point-to-point
matching. The disparity maps are relatively smooth and
more details can be found.

As shown in Plate 2, there are still some regions
without correspondences after the point-to-area matching.
Therefore, a triangulation-based dense matching is presented
to make further dense matches based on the previous
matching results.

Triangulation-based Dense Matching
The triangulation-based dense matching employs an affine
matching propagation strategy inspired by the popular
dense matching methods (Otto and Chau, 1989; Lhuillier
and Quan, 2002; Megyesi and Chetverikov, 2004), which is
a “the best the first” strategy. In this method, “the best”
has two types of meaning, in which one is to select the
most reliable seeds to guide subsequent matching and
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Figure 9. Results of the triangulation-based affine-adaptive cross correlation on data set 3: (a) a reference
image with labeled study areas, (b) left image for the study area 1, (c) right image for the study area 1,
(d) left image for the study area 2, and (e) right image for the study area 2.

Figure 10. Dense matching propagation: (a) neighbor-
hood of x in the left image, and (b) neighborhood of x�
in the right image.
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(a) (b)

(c) (d)

(e) (f)

Plate 1. Point-to-point matching results. (a) Matched interest points for data set 1, (b) disparity map for
data set 1, (c) matched interest points for data set 2, (d) disparity map for data set 2, (e) matched
interest points for data set 3, and (f) disparity map for data set 3.

another is to select the easiest part in the image to match
first and then propagate the matching to the relatively
hard parts.

The matching results (triangle vertexes) from the
previous feature matching are used as seeds in the dense
matching. The matching starts from the top part of the image
and propagates to the bottom part. This is because the
disparity is generally smaller for the top part and larger for
the bottom part for wide-baseline images, which means
matching is relatively easier for the top part compared to the
bottom part. In the actual process, the matching starts from
the image top and propagates to the bottom row by row. For
each row in the image, the seed point with maximum
matching score as recorded in the previous matching process

is selected first for matching and propagates the matching to
its neighborhood. The seeds are stored in a seed list, which
is a heap data structure enabling fast selecting and incre-
mental adding of new matched points as seeds.

Figure 10 shows the dense matching propagation
process. In Figure 10, x and x� are a pair of seed points.
The four-connected neighbor pixels of in the left image
are , and the matching candidates of the four
neighbor pixels in the right image can be forecasted by
the parallax of the seed as marked by . The four
neighborhood pixels are first checked to see
whether already matched or not. If not, the corresponding
point of u is searched in a 3 � 3 window around .
The correlation window is warped using the affine

uœ

ut,ur,ub,ul

uœ

t,uœ

r,uœ

b,uœ

l

ut,ur,ub,ul

x



transformation parameters calculated from the triangle
surrounding the current point. If the matching score is
larger than a predefined threshold (e.g., 0.8), then the
matching is accepted. The newly matched points are then
inserted into the seed list. If all the four neighbor pixels
of the seed have been processed, the current seed will be
removed from the seed list. After all the seeds in the
seed list are processed, the matching propagation is
terminated.

Plate 3 shows the dense matching results for data sets
1, 2, and 3. As can be seen from Plate 3, more points are
matched and more details can be found in the disparity
maps. The disparity maps also show smooth brightness,
which proves the good performance of the proposed
method. Also, it can be noted from Plate 3 that there are

(a) (b)

(c) (d)

(e) (f)

Plate 2. Point-to-area matching results: (a) matched points for data set 1, (b) disparity map for data set
1, (c) matched points for data set 2, (d) disparity map for data set 2, (e) matched points for data set 3,
and (f) disparity map for data set 3.

very few small regions in the images that do not
have successfully matched points at the end. This
is mainly due to the following two reasons. First,
there is insufficient texture in those regions to
correctly match the pixels. Second, those regions
that are visible in one image may not be visible in
the other image due to occlusion problems. It
should be noted that it is very difficult even for
human eyes to find correct matches in those
regions.

Intensive Experimental Analysis
To intensively evaluate the developed method, two
standard data sets: Herz-Jesu-P8 and Fountain-p11
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(a) (b)

(c) (d)

(e) (f)

Plate 3. Dense matching results: (a) matched points for data set 1, (b) disparity map for data set 1,
(c) matched points for data set 2, (d) disparity map for data set 2, (e) matched points for data set 3,
and (f) disparity map for data set 3.

were downloaded from the Computer Vision Laboratory of
EPFL in Switzerland (http://cvlab.epfl.ch/�strecha/multi-
view/denseMVS.html). Each of the data set includes a
pairs of terrestrial wide-baseline images and the associ-
ated lidar point cloud data. The lidar data are well
aligned with the images and it will be used as ground
truth to evaluate the performance of the image matching.
Figure 11 shows the Herz-Jesu-P8 and the Fountain-11
data sets. The interior orientation (IO) and exterior orien-
tation (EO) parameters of the stereo images are known.
The radial distortions for the images have been corrected.
The Herz-Jesu-P8 data set has a wide-baseline of 8.47 m,
and the distance from the camera to the scene is about 14
m. The Fountain-p11 data set has a wide-baseline of 6.92

m, and the distance from the camera to the scene is
about 8.2 m.

Image matching was performed to process the
wide-baseline images in the Herz-Jesu-P8 and the
Fountain-p11 data sets. 3D points were derived based
on the matching results using the associated IO and EO
parameters. To compare the 3D points derived from the
wide-baseline images with the lidar data, the lidar
points were firstly back-projected onto the image pairs
using the IO and EO parameters of the images, and only
those lidar points whose back-projected points over-
lapped with the matched points from the wide-
baseline images were selected for further comparison.
Then, the RMSE (root mean squared error) and
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(a) (b) (c)

(d) (e) (f)

Figure 11. The Herz-Jesu-P8 and the Fountain-p11 data sets: (a) left image of the Herz-Jesu-P8, (b) right
image of the Herz-Jesu-P8, (c) 3D view of the associated lidar data for Herz-Jesu-P8, (d) left image of the
Fountain-p11, (e) right image of the Fountain-p11, and (f) 3D view of the associated lidar data for Fountain-
p11.

maximum value of the difference between the 3D points
derived from the wide-baseline images and the lidar points
were calculated as indicators of the performance of image
matching. The image matching method presented in this
paper (TAACC) was compared with other two image match-
ing methods for the two experimental data sets. One is
DAISY (Tola et al., 2008 and 2010), which is a method for
wide-baseline image matching. The other is NCC (Lhuillie
and Quan, 2002), which is a traditional dense matching
method. The source code for DAISY was downloaded from
the author’s website (http://cvlab.epfl.ch/�tola/daisy.html).
Epipolar constraint and a winner-take-all matching strategy
were employed to determine the corresponding points
using DAISY. NCC was implemented based on the principles
presented in Lhuillie and Quan (2002). The results are
shown in Table 2 and Figure 12.

For the Herz-Jesu-P8 data set, there are 342,053 points
derived from the wide-baseline image matching results
based on TAACC. For DAISY and NCC methods, there are
338,833 and 336,341 points obtained, respectively. TAACC
produces more matched points than the other two methods.

The RMSE and maximum value of the differences between
the 3D points derived from image matching and the lidar
points is 4.2 cm and 58.7 cm for TAACC, respectively. They
are better than those of DAISY and NCC method, which
indicates the very good performance of the proposed TAACC
method. Similar results can be found for the Fountain-p11
data set.

Figure 12 plots the percentage of correctly calculated
depth against the error threshold setting to a fraction of
the scene’s depth range for the two data sets. For example,
for the Herz-Jesu-P8 data set, about 82 percent of 3D points
generated from the NCC matching results have differences
of less than 0.5 percent of the scene’s depth range (7 cm)
compared with the lidar points. While for the DAISY and
TAACC method, the percentage is 87.5 percent and 90
percent under the same condition, respectively.

In the experiments, the proposed method also behaves
efficiently. The method is implemented using C��, and the
processing time (from image orientation to the final dense
matching results) is about three minutes for the two data
sets using a 2.5GHZ CPU machine.

TABLE 2. EXPERIMENTAL RESULTS

Lidar Points Used 
Data Set Method Matched Points for Comparison RMSE Maximum

Herz-Jesu-P8 TAACC 342053 261643 4.2 cm 58.7 cm
DAISY 338833 255648 7.1 cm 79.0 cm
NCC 336341 253022 9.9 cm 112.1 cm

Fountain-p11 TAACC 591155 324084 6.2 cm 68.6 cm
DAISY 513796 271537 7.5 cm 82.0 cm
NCC 503745 294885 11.0 cm 127.2 cm
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Figure 12. The correctly estimated depth against the
error: (a) results for the Herz-Jesu-P8 data set, and (b)
results for the Fountain-p11 data set.

Conclusions and Discussion
This paper presented a triangulation-based hierarchical
image matching method for wide-baseline images. The
experiment analyses using actual wide-baseline images
conveyed the following conclusions:

1. The SIFT algorithm incorporated with the RANSAC
approach can provide reliable but sparse correspondences,
which is ideal for image orientation of the wide-baseline
images. This also enables reliable wide-baseline image
matching without knowing any prior information about the
images.

2. The triangulation-based disparity constraint and triangulation-
based gradient orientation constraint can help alleviate the
matching ambiguity, particularly for wide-baseline images.

3. The triangulation-based affine-adaptive cross-correlation
enables correct matches to be found on wide-baseline
images even in the local regions with large perspective
distortions.

4. The proposed triangulation-based hierarchical image
matching strategy incorporating the merits of both feature-
based matching and area-based matching with the capability

of generating reliable and dense matching results efficiently
is ideal for terrain mapping or surface reconstruction from
wide-baseline images.
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